Synchronized深度解析

Synchronized 的两种用法

  1. 对象锁 (包括方法锁,默认锁对象为this当前实例对象)和同步代码块锁(自己指定锁对象)
  2. 类锁(指synchronizd修饰静态的方法或指定锁为Class对象)

第一种用法: 对象锁

代码块形式:手动指定锁对象

方法锁形式: synchronized 修饰普通方法,锁对象默认为this.

public class SynchronizedObjectCodeBlock implements Runnable {

    static SynchronizedObjectCodeBlock instance = new SynchronizedObjectCodeBlock();
    Object lock = new Object(); //手动指定对象
    Object lock2 = new Object();
    public static void main(String[] args) {
        Thread t1 = new Thread(instance);
        Thread t2 = new Thread(instance);
        t1.start();
        t2.start();
        while (t1.isAlive() || t2.isAlive()) {

        }
        System.out.println("finished");
    }

    @Override
    public void run() {
        synchronized (lock) {
            System.out.println("我是对象锁的代码块形式,我叫" + Thread.currentThread().getName());
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "运行结束");
        }
        synchronized (lock2) {
            System.out.println("我是对象锁的代码块形式,我叫" + Thread.currentThread().getName());
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "运行结束");
        }
    }
}

普通方法锁

public class SynchronizedObjectMethod implements Runnable {

    static SynchronizedObjectMethod instance = new SynchronizedObjectMethod();

    public static void main(String[] args) {
        Thread t1 = new Thread(instance);
        Thread t2 = new Thread(instance);
        t1.start();
        t2.start();
        while (t1.isAlive() || t2.isAlive()) {

        }
        System.out.println("finished");
    }

    @Override
    public void run() {
        method();
    }

    public synchronized void method() {
        System.out.println("我的对象锁的方法修饰符形式,我叫" + Thread.currentThread().getName());
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + "finish");

    }
}

第二种用法: 类锁

概念(重要): Java类可能有很多个对象,但只有一个Class对象

形式2: synchronized (*.class) 代码块

本质: 所以所谓的类锁,不过是Class对象的锁而已。

用法和效果: 类锁只能在 同一时刻被一个对象拥有。

形式1: synchronized 加在 static方法上

synchronized 关键字原理

众所周知 synchronized 关键字是解决并发问题常用解决方案,有以下三种使用方式:

  • 同步普通方法,锁的是当前对象。
  • 同步静态方法,锁的是当前 Class 对象。
  • 同步块,锁的是 () 中的对象。

实现原理: JVM 是通过进入、退出对象监视器( Monitor )来实现对方法、同步块的同步的。

具体实现是在编译之后在同步方法调用前加入一个 monitor.enter 指令,在退出方法和异常处插入 monitor.exit 的指令。

其本质就是对一个对象监视器( Monitor )进行获取,而这个获取过程具有排他性从而达到了同一时刻只能一个线程访问的目的。

而对于没有获取到锁的线程将会阻塞到方法入口处,直到获取锁的线程 monitor.exit 之后才能尝试继续获取锁。

流程图如下:

img

通过一段代码来演示:

    public static void main(String[] args) {
        synchronized (Synchronize.class){
            System.out.println("Synchronize");
        }
    }

使用 javap -c Synchronize 可以查看编译之后的具体信息。

public class com.crossoverjie.synchronize.Synchronize {
  public com.crossoverjie.synchronize.Synchronize();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: ldc           #2                  // class com/crossoverjie/synchronize/Synchronize
       2: dup
       3: astore_1
       **4: monitorenter**
       5: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
       8: ldc           #4                  // String Synchronize
      10: invokevirtual #5                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
      13: aload_1
      **14: monitorexit**
      15: goto          23
      18: astore_2
      19: aload_1
      20: monitorexit
      21: aload_2
      22: athrow
      23: return
    Exception table:
       from    to  target type
           5    15    18   any
          18    21    18   any
}

可以看到在同步块的入口和出口分别有 monitorenter,monitorexit 指令。

锁优化

synchronized 很多都称之为重量锁,JDK1.6 中对 synchronized 进行了各种优化,为了能减少获取和释放锁带来的消耗引入了偏向锁轻量锁

轻量锁

当代码进入同步块时,如果同步对象为无锁状态时,当前线程会在栈帧中创建一个锁记录(Lock Record)区域,同时将锁对象的对象头中 Mark Word 拷贝到锁记录中,再尝试使用 CASMark Word 更新为指向锁记录的指针。

如果更新成功,当前线程就获得了锁。

如果更新失败 JVM 会先检查锁对象的 Mark Word 是否指向当前线程的锁记录。

如果是则说明当前线程拥有锁对象的锁,可以直接进入同步块。

不是则说明有其他线程抢占了锁,如果存在多个线程同时竞争一把锁,轻量锁就会膨胀为重量锁

解锁

轻量锁的解锁过程也是利用 CAS 来实现的,会尝试锁记录替换回锁对象的 Mark Word 。如果替换成功则说明整个同步操作完成,失败则说明有其他线程尝试获取锁,这时就会唤醒被挂起的线程(此时已经膨胀为重量锁)

轻量锁能提升性能的原因是:

认为大多数锁在整个同步周期都不存在竞争,所以使用 CAS 比使用互斥开销更少。但如果锁竞争激烈,轻量锁就不但有互斥的开销,还有 CAS 的开销,甚至比重量锁更慢。

偏向锁

为了进一步的降低获取锁的代价,JDK1.6 之后还引入了偏向锁。

偏向锁的特征是:锁不存在多线程竞争,并且应由一个线程多次获得锁。

当线程访问同步块时,会使用 CAS 将线程 ID 更新到锁对象的 Mark Word 中,如果更新成功则获得偏向锁,并且之后每次进入这个对象锁相关的同步块时都不需要再次获取锁了。

释放锁

当有另外一个线程获取这个锁时,持有偏向锁的线程就会释放锁,释放时会等待全局安全点(这一时刻没有字节码运行),接着会暂停拥有偏向锁的线程,根据锁对象目前是否被锁来判定将对象头中的 Mark Word 设置为无锁或者是轻量锁状态。

偏向锁可以提高带有同步却没有竞争的程序性能,但如果程序中大多数锁都存在竞争时,那偏向锁就起不到太大作用。可以使用 -XX:-userBiasedLocking=false 来关闭偏向锁,并默认进入轻量锁。

适应性自旋

在使用 CAS 时,如果操作失败,CAS 会自旋再次尝试。由于自旋是需要消耗 CPU 资源的,所以如果长期自旋就白白浪费了 CPUJDK1.6加入了适应性自旋:

如果某个锁自旋很少成功获得,那么下一次就会减少自旋。


  转载请注明: Hi 高虎 Synchronized深度解析

 上一篇
多线程特性解读 多线程特性解读
原子性 java的原子性就和数据库事物的原子性差不多,线程的一个或者多个操作要么全部执行,而且执行过程不会被打断,要么全部都不执行. JMM只是保证了基本的原子性,但类似i++ 之类的操作,看似是原子操作,其实里面涉及到 获取i的值
2019-01-07
下一篇 
HDFS简介及其功能 HDFS简介及其功能
HDFS简介Hadoop分布式文件系统HDFS的设计目标是管理数以千计的服务器、数以万计的磁盘,将这么大规模的服务器计算资源当做一个单一的存储系统进行管理,对应用程序提供数以PB计的存储容量,让应用程序像使用普通文件系统一样存储大规模的文件
2019-01-02
  目录