1. CAS详解

CAS的全称是Compare And Swap 即比较交换,其算法核心思想如下

执行函数:CAS(V,E,N)

其包含3个参数

  • V表示要更新的变量,内存地址V
  • 旧的预期值E
  • N表示新值

如果V值等于E值,则将V的值设为N。若V值和E值不同,则说明已经有其他线程做了更新,CAS操作需要我们提供一个期望值, 当期望值与当前线程的变量值相同时,说明还没线程修改该值,当前线程可以进行修改,也就是执行CAS操作,但如果期望值与当前线程不符,则说明该值已被其他线程修改,此时不执行更新操作,但可以选择重新读取该变量再尝试再次修改该变量,也可以放弃操作,原理图如下

CAS是一条CPU的原子指令,不会造成所谓的数据不一致问题

1.1. 并发包中的原子操作类(Atomic系列)

  • AtomicBoolean:原子更新布尔类型
  • AtomicInteger:原子更新整型
  • AtomicLong:原子更新长整型

源码分析:

public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;

    // 获取指针类Unsafe
    private static final Unsafe unsafe = Unsafe.getUnsafe();

    //下述变量value在AtomicInteger实例对象内的内存偏移量
    private static final long valueOffset;

    static {
        try {
           //通过unsafe类的objectFieldOffset()方法,获取value变量在对象内存中的偏移
           //通过该偏移量valueOffset,unsafe类的内部方法可以获取到变量value对其进行取值或赋值操作
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
   //当前AtomicInteger封装的int变量value
    private volatile int value;

    public AtomicInteger(int initialValue) {
        value = initialValue;
    }
    public AtomicInteger() {
    }
   //获取当前最新值,
    public final int get() {
        return value;
    }
    //设置当前值,具备volatile效果,方法用final修饰是为了更进一步的保证线程安全。
    public final void set(int newValue) {
        value = newValue;
    }
    //最终会设置成newValue,使用该方法后可能导致其他线程在之后的一小段时间内可以获取到旧值,有点类似于延迟加载
    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }
   //设置新值并获取旧值,底层调用的是CAS操作即unsafe.compareAndSwapInt()方法
    public final int getAndSet(int newValue) {
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }
   //如果当前值为expect,则设置为update(当前值指的是value变量)
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
    //当前值加1返回旧值,底层CAS操作
    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }
    //当前值减1,返回旧值,底层CAS操作
    public final int getAndDecrement() {
        return unsafe.getAndAddInt(this, valueOffset, -1);
    }
   //当前值增加delta,返回旧值,底层CAS操作
    public final int getAndAdd(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }
    //当前值加1,返回新值,底层CAS操作
    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
    //当前值减1,返回新值,底层CAS操作
    public final int decrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
    }
   //当前值增加delta,返回新值,底层CAS操作
    public final int addAndGet(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }
   //省略一些不常用的方法....
}

可看出getAndAddInt通过一个while循环不断的重试更新要设置的值,直到成功为止,调用的是Unsafe类中的compareAndSwapInt方法,是一个CAS操作方法

1.2. CAS的缺点

  • CPU开销较大:在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。do while循环一直尝试
  • 不能保证代码块的原子性:CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。
  • ABA问题

1.3. CAS的ABA问题及其解决方案

  • AtomicStampedReference类:AtomicStampedReference原子类是一个带有时间戳的对象引用,在每次修改后,AtomicStampedReference不仅会设置新值而且还会记录更改的时间。当AtomicStampedReference设置对象值时,对象值以及时间戳都必须满足期望值才能写入成功,这也就解决了反复读写时,无法预知值是否已被修改的窘境
  • AtomicMarkableReference类:AtomicMarkableReference维护的是一个boolean值的标识,也就是说至于true和false两种切换状态,而对于AtomicMarkableReference来说只能减少ABA问题的发生概率,并不能杜绝。
© gaohueric all right reserved,powered by Gitbook文件修订时间: 2021-12-08 23:22:22

results matching ""

    No results matching ""