1. 图与搜索
1.1. 回溯算法
1.1.1. 什么是回溯法
回溯法也可以叫做回溯搜索法,它是一种搜索的方式,回溯是递归的副产品,只要有递归就会有回溯。
1.1.2. 回溯法的效率
回溯法的性能如何呢,这里要和大家说清楚了,「虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法」。
「因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案」,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
那么既然回溯法并不高效为什么还要用它呢?
因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。
1.1.3. 回溯法解决的问题
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 棋盘问题:N皇后,解数独等等
组合是不强调元素顺序的,排列是强调元素顺序
例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。
1.1.4. 如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,「集合的大小就构成了树的宽度,递归的深度,都构成的树的深度」。
递归就要有终止条件,所以必然是一颗高度有限的树(N叉树)。
这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。
1.1.5. 回溯法模板
class Solution{
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
}